Dynamic Distribution of High-Rate Data Processing from CERN to Remote HPC Data Centers
نویسندگان
چکیده
Abstract The prompt reconstruction of the data recorded from Large Hadron Collider (LHC) detectors has always been addressed by dedicated resources at CERN Tier-0. Such workloads come in spikes due to nature operation accelerator and special high load occasions experiments have commissioned methods distribute (spill-over) a fraction sites outside CERN. present work demonstrates new way supporting Tier-0 environment provisioning elastically for such spilled-over workflows onto Piz Daint Supercomputer CSCS. This is implemented using containers, tuning existing batch scheduler reinforcing scratch file system, while still standard Grid middleware. ATLAS, CMS CSCS jointly run selected on up several thousand cores into shared environment, thereby probing viability performance computer site as demand extension Tier-0, which could play role addressing future LHC computing challenges luminosity LHC.
منابع مشابه
modeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Dynamic Inbound Rate Adjustment Scheme for Virtualized Cloud Data Centers
This paper proposes a rate adjustment scheme for inbound data traffic on a virtualized host. Most prior studies on network virtualization have only focused on outbound traffic, yet many cloud applications rely on inbound traffic performance. The proposed scheme adjusts the inbound rates of virtual network interfaces dynamically in proportion to the bandwidth demands of the virtual machines. key...
متن کاملPerformance Evaluation of Multiple Cloud Data Centers Allocations for HPC
This paper evaluates the behavior of the Microsoft Azure G5 cloud instance type over multiple Data Centers. The purpose is to identify if there are major differences between them and to help the users choose the best option for their needs. Our results show that there are differences in the network level for the same instance type in different locations and inside the same location at different...
متن کاملExtracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computing and software for big science
سال: 2021
ISSN: ['2510-2036', '2510-2044']
DOI: https://doi.org/10.1007/s41781-020-00052-w